Towards a structure-performance relationship for hydrogen storage in Ti-doped NaAlH4 nanoparticles.
نویسندگان
چکیده
Hydrogen storage properties of Ti-doped nanosized (~20 nm) NaAlH(4) supported on carbon nanofibers were affected by the stage at which Ti was introduced. When Ti was deposited first followed by NaAlH(4), sorption properties were superior to the case where NaAlH(4) was deposited first followed by NaAlH(4). This was the result of both a smaller NaAlH(4) particle size and the more extensive catalytic action of Ti in the former material.
منابع مشابه
On the Reversibility of Hydrogen Storage in Novel Complex Hydrides
A comparison of the hydrogen release and uptake (cycling) capability of Ti-doped NaAlH4, LiAlH4 and Mg(AlH4)2 as a function of Ti dopant concentration, temperature, pressure, and cycle number is reported. Temperature programmed desorption revealed hydrogen release capacities of around 3 wt% at 140 C, 3 wt % at 100 C and 6 wt% at 150 C, respectively for the Ti doped Na, Li and Mg alanates. In th...
متن کاملEnhanced hydrogen storage properties of NaAlH4 co-catalysed with niobium fluoride and single-walled carbon nanotubes
The effects of single-walled carbon nanotubes (SWCNTs) as a co-catalyst with NbF5 on the dehydrogenation and hydrogenation kinetics of NaAlH4 were investigated by X-ray diffraction, Fourier transform infrared spectroscopy, differential thermal analysis, temperature-programmed desorption, and isothermal hydrogen ab/desorption techniques. It has been revealed that there is a synergistic effect of...
متن کاملEquilibrium structure and Ti-catalyzed H2 desorption in NaAlH4 nanoparticles from density functional theory.
Improving the hydrogen ab- and desorption kinetics in complex hydrides is essential if these materials are to be used as reversible hydrogen storage media in the transport sector. Although reductions in particle size and the addition of titanium based compounds have been found to improve the kinetics significantly, the physical understanding remains elusive. Density functional theory is used to...
متن کاملFY 2009 Annual Progress Report DOE Hydrogen Program
Showed that the calculated activation energy for • AlH3 vacancy diffusion in NaAlH4 is 85 kJ/mol H2, suggesting that it is the rate-limiting step in hydrogen release kinetics from Ti-doped samples. Obtained the activation energies for surface• controlled vacancy creation in pure undoped NaAlH4, showed that vacancy creation limits the dehydrogenation kinetics for particle sizes above ~0.1 μm. Id...
متن کاملNanoconfined NaAlH4: prolific effects from increased surface area and pore volume.
Nanoconfinement is a promising technique to improve the properties of nanomaterials such as the kinetics for hydrogen release and uptake and the stability during cycling. Here we present a systematic study of nanoconfined NaAlH4 in nanoporous scaffolds with increasing surface area and pore volume and almost constant pore sizes in the range of 8 to 11 nm. A resorcinol formaldehyde carbon aerogel...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Chemical communications
دوره 47 7 شماره
صفحات -
تاریخ انتشار 2011